As the fracking industry continues to evolve and expand, the demands on the surrounding water supplies will also grow. Along with this, there will be a need to process even larger volumes of produced frac water. The hydraulic fracturing process requires between 3 to 5 million gallons of fluid per well. That fluid consists of a mixture that is 98% water and sand, with the remaining elements being chemical additives that have specific functions in the process.
The additives in frac water include several that are classified as hazardous substances, which complicates the handling of frac water. While hauling frac water away is one option, it’s probably not the most efficient or cost-effective. Here are the benefits of treating frac water on-site for reuse as opposed to transport and disposal.
Solutions Needed for Properly Disposing of Frac Water
The process of fracking creates a demand for water which is in short supply across the country. About half of the water used in the fracking process is recovered as flowback. In the past, that flowback was expensive and difficult to treat. Regulations in some areas are now limiting deep well injection. Many fracking operations are also discovering that the treatment and recycling of frac water are more beneficial to their operations.
Wastewater Disposal Limitations
When flowback is returned to the surface, that wastewater must be handled in the most responsible manner possible. The wastewater, which contains corrosive chemicals, gets stored in a job site’s frac tanks. While it’s possible to store frac water in a site pond for a short period, this isn’t recommended due to environmental regulations.
Today, most wastewater is disposed of in underground injection wells. These class II injection wells create a system of “injecting” the wastewater up to 10,000 feet below the surface into sealed porous rock formations. The problem with deep water injection is twofold. Some areas don’t have the right geologic conditions for these wells. The wells are also highly regulated by both the EPA and state regulators.
Environmental Complications of Wastewater Disposal vs. Reuse
Most fracking wellheads discharge as much as 10,000 gallons a day of wastewater. Environmental groups aren’t fans of deep well-injection wastewater disposal techniques, and there have been a few instances of surface water contamination from these wells. Even without the controversy, the wells are expensive to build, use, and maintain, and the cost to comply with environmental regulations is making the process cost-prohibitive.
According to a study by Navigant Research, the costs and revenue associated with wastewater reuse vs. disposal are going to make the option more popular in the coming years. As fresh water becomes more expensive and water treatment technology becomes more affordable, recycling and reusing frac water will become the overwhelming solution. An added benefit is that these treatment options are modular, meaning they are easily transported around a job-site or even to a new location when needed.
Fluid Recycling as an Alternative Solution
Fluid recycling and reuse of the wastewater in a frac tank is an alternative solution to dealing with frac water. In the past, companies that wanted to treat their frac water had to have it hauled off-site, which was another expense in the process. Now there is a way to treat frac water on-site so that it can be effectively reused in the fracking process.
Treating frac water on-site involves a proprietary oxidation process that disinfects and sterilizes water. Fluid recycling is a chemical-free treatment of wastewater that removes hydrocarbons, bacteria, and soluble organics, which eliminates the need to use any hazardous chemicals. The process prevents corrosion, scaling, and biofouling, which also reduces the need for corrosion-control measures. By treating water on-site, the demand to produce additional freshwater for the operation is eased because the water can be reused.
Instead of relying on expensive or short-term solutions such as deep wells or fracking ponds, a frac water treatment system can clean up a site’s flowback and make it ready for reuse. When used efficiently, a recycling and reuse system can actually save a company money, which will improve its bottom-line results.