Skip to main content
Monthly Archives

August 2017

Test Oil Containers for Leaks - Lifting Equipment

How to Test Your Oil Containers for Leaks

By Frac Tanks

Not only is ensuring that your oil tanks are leak-free the right thing to do, but it’s also a requirement according to EPA standards. If you have aboveground bulk storage containers, you must first establish a baseline condition for each and then develop an adequate program for inspection and testing.

Establishing a Baseline Condition for Aboveground Containers

All inspection and testing programs must begin somewhere. This is your baseline. A container’s baseline gives information about the container’s current condition relative to the design metal thickness and the metal loss rate from corrosion. Inspection requirements will vary, but most onsite oil containers will require more than just a visual inspection. This means that it needs a baseline.

If there is no baseline available for a container, then one can be established through a two-part process. One inspection is done to determine the container’s bottom plate and existing shell thickness. A second inspection will establish corrosion rates.

How to Inspect Aboveground Bulk Storage Containers

The EPA’s Spill Prevention, Control, and Countermeasure Plan (SPCC) program require that aboveground storage containers with a capacity of 55 gallons or greater be inspected and tested to determine that they meet certain conditions.

SPCC rules require that aboveground storage containers be inspected for any signs of discharge, deterioration, or accumulation of oil within diked areas. This is a routine walk-around visual inspection that should include all of the container’s foundations and supports.

Containers also require periodic integrity testing to determine whether or not the container can continue in service until the next inspection cycle. In some cases, integrity testing might be the same as an external visual inspection. In others, it involves more complicated testing such as ultrasonic thickness (UT) measurements, weld inspections, Magnetic Flux Leakage (MFL) measurements, and vacuum box testing.

Most visual inspections can be completed by trained on-site personnel. The other types of testing will require that you use specialists according to industry standards.  If you have mobile or portable tanks, industry standards (such as STI SP001) will allow you to use only visual inspections to confirm the integrity of certain tanks. The same holds true for other portable tanks that have sufficient secondary containment.

Some job sites and aboveground tanks are unique. In these cases, you can use a hybrid inspection program, which can vary by job site, in the place of industry standards. In these cases, industry standards should be considered as a baseline to develop the safest and most effective aboveground tank inspection program for your needs.

Developing a Program for Testing Containers

Either your company’s experts or a hired Professional Engineer (PE) must determine which industry standards apply to your oil containers.  These are industry-specific guidelines, and there are several that might apply. A few of the most commonly used industry standards are the Steel Tank Institute’s (STI) SP001 Standard for the Inspection of Aboveground Storage Tanks and the American Petroleum Institute’s (API) 653 Standard Tank Inspection, Repair, Alteration, and Reconstruction.

The industry standard that you choose will determine what personnel are qualified to perform inspections and tests. It will also determine the type and frequency of testing that you should implement. When doing internal inspections, you will typically have to take a tank out of service and clean it so that it is ready for inspection. Other tests can be completed while the tank is in use, including UT robotic measurement and acoustic emission testing.

Inspection Frequency

A compliant SPCC plan requires that you do “regular” inspection and testing of aboveground bulk storage containers, or anytime after making material repairs. Your regular schedule should comply with industry standards and will take several factors into account. These include the specifications, age, service history, prior inspection results, and current condition of the container. They also might consider the location, where a container’s breach could threaten navigable waters. Because a container’s condition will change over time, so may the requirements for its inspection frequency. As settling and corrosion rates accelerate, inspection dates will be closer together.

Recording Inspection Results

To have a valid SPCC Plan, your company must thoroughly document its integrity testing and inspection program. The records should contain the complete schedule for all container tests and inspections. SPCC rules require that these records be kept for a period of three years, but the best practice is to keep any records pertaining to inspections and tests for the life of a container.

Having aboveground bulk storage containers on your site means that you must comply with SPCC guidelines. Use these tips to help your company establish a baseline for your tanks, develop a testing program, and inspect your containers according to the proper industry standards

Frac Tanks Benefits

Frac Water Treatment Benefits

By Containment Systems, Frac Tanks

As the fracking industry continues to evolve and expand, the demands on the surrounding water supplies will also grow. Along with this, there will be a need to process even larger volumes of produced frac water. The hydraulic fracturing process requires between 3 to 5 million gallons of fluid per well. That fluid consists of a mixture that is 98% water and sand, with the remaining elements being chemical additives that have specific functions in the process.

The additives in frac water include several that are classified as hazardous substances, which complicates the handling of frac water. While hauling frac water away is one option, it’s probably not the most efficient or cost-effective. Here are the benefits of treating frac water on-site for reuse as opposed to transport and disposal.

Solutions Needed for Properly Disposing of Frac Water

The process of fracking creates a demand for water which is in short supply across the country. About half of the water used in the fracking process is recovered as flowback. In the past, that flowback was expensive and difficult to treat. Regulations in some areas are now limiting deep well injection. Many fracking operations are also discovering that the treatment and recycling of frac water are more beneficial to their operations.

Wastewater Disposal Limitations

When flowback is returned to the surface, that wastewater must be handled in the most responsible manner possible. The wastewater, which contains corrosive chemicals, gets stored in a job site’s frac tanks. While it’s possible to store frac water in a site pond for a short period, this isn’t recommended due to environmental regulations.

Today, most wastewater is disposed of in underground injection wells. These class II injection wells create a system of “injecting” the wastewater up to 10,000 feet below the surface into sealed porous rock formations. The problem with deep water injection is twofold. Some areas don’t have the right geologic conditions for these wells. The wells are also highly regulated by both the EPA and state regulators.

Environmental Complications of Wastewater Disposal vs. Reuse

Most fracking wellheads discharge as much as 10,000 gallons a day of wastewater. Environmental groups aren’t fans of deep well-injection wastewater disposal techniques, and there have been a few instances of surface water contamination from these wells.  Even without the controversy, the wells are expensive to build, use, and maintain, and the cost to comply with environmental regulations is making the process cost-prohibitive.

According to a study by Navigant Research, the costs and revenue associated with wastewater reuse vs. disposal are going to make the option more popular in the coming years. As fresh water becomes more expensive and water treatment technology becomes more affordable, recycling and reusing frac water will become the overwhelming solution. An added benefit is that these treatment options are modular, meaning they are easily transported around a job-site or even to a new location when needed.

Fluid Recycling as an Alternative Solution

Fluid recycling and reuse of the wastewater in a frac tank is an alternative solution to dealing with frac water. In the past, companies that wanted to treat their frac water had to have it hauled off-site, which was another expense in the process. Now there is a way to treat frac water on-site so that it can be effectively reused in the fracking process.

Treating frac water on-site involves a proprietary oxidation process that disinfects and sterilizes water. Fluid recycling is a chemical-free treatment of wastewater that removes hydrocarbons, bacteria, and soluble organics, which eliminates the need to use any hazardous chemicals. The process prevents corrosion, scaling, and biofouling, which also reduces the need for corrosion-control measures. By treating water on-site, the demand to produce additional freshwater for the operation is eased because the water can be reused.

Instead of relying on expensive or short-term solutions such as deep wells or fracking ponds, a frac water treatment system can clean up a site’s flowback and make it ready for reuse. When used efficiently, a recycling and reuse system can actually save a company money, which will improve its bottom-line results.

Frac Tanks Alternative Uses

Alternative Uses for Frac Tanks in the Oil & Gas and Pipeline Industries

By Frac Tanks

Oil and gas developers introduced fracking as a means to release hydrocarbons as efficiently as possible. Fracking is mostly responsible for this country’s surging oil and gas production over the past half-century or more.

Hydraulic fracturing involves tapping tight rock formations such as shale by drilling deeply below the surface (a mile or more). A mixture of water, sand, and other additives are pumped into the drilled well at high pressure, which creates small fractures in the rock.

A frac tank is a large mobile storage vessel used to store the acid integral to the fracking process. Tanks are generally able to hold 21,000 gallons or as much as 500 barrels of fluid. They are affixed with valves on one end which allows several tanks to be connected to a particular frac job.

Frac tanks first emerged in the 1940s, and the modern versions have been with us since the 1960s and 1970s, with a standard design. The original frac tanks, which remain in widespread use today, are a long rectangular steel box with corrugated walls. The tank has a flat roof and a v-bottomed floor. Frac tanks are able to fit perfectly on an 18-wheeler for easy transport to a job site.

There are other versions of this original frac tank, where the design has been tweaked to better serve a variety of needs. For example, some tanks have sealed roof hatches, different manways for side and roof access, and mixer capabilities. There are also smooth wall tanks and double-walled tanks for environmentally-sensitive projects.

Aside from the normal frac usage for which the tanks were designed, frac tanks are now being utilized extensively in the oil and gas industry for a variety of purposes.

Download our free guide to get the full list of alternative applications.

Why Acid Tanks Leak

Why Do Oilfield Acid Tanks Leak?

By Containment Systems, Frac Tanks

One of the larger challenges associated with the modern hydraulic fracturing process is what to do with all that acid and other chemicals.

Though the extraction method has been beneficial for natural gas and oil production, industry officials want to make sure it also has a minimal impact on the environment. So research continues into safer methods for storage and transportation of the acid and other corrosive chemicals and additives that can be contained in the fracking fluid.

Recovered acid, water, and fuel are typically stored in frac tanks near the wells since the material can often be used and recycled.  But until it is officially declared waste and disposed of as hazardous material, oil field companies keep it secure in these holding tanks, many of which were originally steel containers designed to store water in volumes of up to 20,000 gallons. Since acid corrodes steel, acid-resistant liners were added to keep tanks from leaking and rupturing.

Unfortunately, liners are susceptible to buckling, flexing or cracking during transportation, which will lead to containment failure.

In addition to following any local or state environmental quality regulations, oil companies must adhere to EPA rules governing Secondary Containment. This approach not only requires companies to use sturdy and safe storage containers for oilfield equipment but install a second system responsible for catching and containing anything that may spill from these containers or if and when they fail. The intent is to prevent the fluids from reaching water sources.

A leak of any size needs to be reported as soon as practical. A significant spill could also perhaps force a suspension of operations until an official response, investigation or remediation/clean-up efforts take place, potentially resulting in local, state, or federal fines, regardless, if the spill was deliberate or accidental. Defending yourself against these violations in criminal or civil proceedings could require even more time and resources, as well as negatively affect your company’s reputation.

Texoma MFG has developed a new, patented leak-proof acid tank, allowing the tank itself to become the required secondary containment structure. This revolutionary new product will help completely eliminate acid tank leaks and spills, setting a new standard in the oil & gas industry.

Leak-Proof Acid Storage Tank

Leak-Proof Frac Tanks: The Revolutionary Oilfield Solution

By Containment Systems, Frac Tanks

The Shale Revolution is a product of American Ingenuity and enabled U.S. oil companies to halt the declining trajectory of domestic oil and gas reserves.

Between 2009 and 2015, U.S. crude oil production increased 83 percent, catapulting America to one of the top three crude oil-producing countries in the world.

As completion and production technologies advance, field operations are pushing equipment to the limit – and sometimes past the point of failure. Concurrently, Safety and Environmental regulations are becoming more stringent – requiring service contractors, who actually perform the work in the field, to develop new tools and equipment to meet the harsh operating conditions.

The Complications of Fracking

The most well known and controversial well completion procedure is called multistage hydraulic fracturing; a well-stimulation technique in which rock is fractured by injecting liquids into subsurface rock formations at very high pressure. The most common frac fluids are water and hydrochloric acid (HCL). These liquids must be safely transported and contained on the well site prior to being injected into the ground.

The average frac in Oklahoma requires about 42,000 gallons of hydrochloric acid, and current trends reveal oil companies are increasing the number of stages, and volumes per stage, which will result in significantly more acid being required in the future.

Since most well sites are located in close proximity to cropland and waterways used by livestock and municipal water treatment systems, storing large amounts of hydrochloric acid on a well site presents substantial contingent liabilities to oil companies.  A large acid spill results in damages that begin in the million-dollar range, and can quickly climb higher depending on the extent of the spill.

To offset these costly liabilities, most oil companies install secondary containment berms around all acid tanks on the frac location. Some also install a poly mat underneath the tanks to protect the soil. These containment systems can cost up to $20,000.00 (or more) per location.

The Need for a Better Solution

Surprisingly, the standard acid storage tank used by the oil industry is a steel “frac” tank originally developed to store water. Even though acid corrodes steel, most acid tank operators simply install an acid-resistant liner inside the frac tank, and call it an “acid tank”. These liners are acid-resistant coatings applied while wet and becomes rigid when dry. During transport, the walls of the tank flex, and over time cause small cracks to develop in the liner which leads to a liner failure. Other causes of liner failure are lack of proper maintenance, substandard liner material, and harsh conditions in the field – all-cause liners to fail, and they fail often, resulting in acid spills.

The average lifespan of an acid tank liner is one to two years. The cost of installing a new liner average $15,000.00 per tank. There have been many attempts by acid tank operators to address liner failures, and they always focus on improving the liner itself. Until now, no company has solved the problem.

Texoma MFG has designed and patented a new acid tank which eliminates liner failures by isolating the interior walls of the tank from the acid. By containing the acid in a polyethylene bladder inside the tank, the interior tank walls never come into contact with acid. This allows the tank to become the required secondary containment structure.